Trocoide, en geometría analítica, es una curva del plano, determinada por un punto fijo de una circunferencia llamada generatriz, la misma que rueda, tangencialmente, sin resbalar sobre una recta nombrada directriz.
La palabra proviene de la raíz griega trokos (rueda), un término propuesto por el matemático Roberval (1602-1675).
Al generarse la curva trocoide, el centro de la circunferencia se desplaza paralelamente a la recta directriz.
Las ecuaciones paramétricas de la trocoide, cuando la recta directriz es el eje X, son las siguientes:
donde es la variable del ángulo que describe la circunferencia de radio a, y la distancia del centro al punto P es b.
Dependiendo de donde se encuentra respecto de la circunferencia generatriz, se llama:
Una trocoide acortada puede ser descrita por el movimiento del pedal de una bicicleta (respecto de la carretera).
Las partículas de agua de las olas, describen un movimiento trocoidal respecto del fondo de mar .
La directriz es una recta | ||||
d = r | d < r | d > r | ||
cicloide | trocoide | |||
cicloide normal | cicloide acortada | cicloide alargada |
La directriz es una circunferencia | ||||
d = r | d < r | d > r | ||
La generatriz es exterior a al directriz | epicicloide | epitrocoide | ||
epicicloide normal | epicicloide acortada | epicicloide alargada | ||
La generatriz es interior a al directriz | hipocicloide | hipotrocoide | ||
hipocicloide normal | hipocicloide acortada | hipocicloide alargada | ||
La directriz es interior a al generatriz | pericicloide | peritrocoide | ||
pericicloide normal | pericicloide acortada | pericicloide alargada |