En teoría de la probabilidad, el teorema de Slutsky[1][2] extiende algunas propiedades de operaciones algebraicas sobre sucesiones convergentes de números reales a sucesiones de variables aleatorias.
El teorema lleva el nombre de Yevgueni Slutski[3] aunque es también atribuido a Harald Cramér.[4]
Sean {Xn}, {Yn} sucesiones de variables aleatorias.
Si Xn converge en distribución a una variable aleatoria X; e Yn converge en probabilidad a una constante c, entonces
donde denota convergencia en distribución.
Observaciones:
Este teorema se deduce del hecho de que si Xn converge en distribución a X e Yn converge en probabilidad a una constante c, entonces el vector (Xn, Yn) converge en distribución a (X, c). Luego, se aplica el teorema de la aplicación continua, considerando las funciones g(x,y)=x+y, g(x,y)=xy, y g(x,y)=x−1y como continuas (para que la última función sea continua, x debe ser invertible).[5]