Un poliedro uniforme dual es el conjugado de un poliedro uniforme. Cuando un poliedro uniforme es isogonal, entonces su correspondiente poliedro uniforme dual es isoedral.
Los poliedros de con la propiedad de ser cara-transitivos comprenden el conjunto de 9 poliedros regulares, dos conjuntos finitos que comprenden 66 poliedros no regulares y dos conjuntos infinitos:
Magnus Wenninger describió el conjunto completo, junto con instrucciones para construir los correspondientes modelos, en su libro Dual Models.
Para un poliedro uniforme, cada cara del poliedro dual puede derivarse de la figura de vértice correspondiente del poliedro original usando la construcción Dorman Luke.[1]
Como ejemplo, la siguiente ilustración muestra la figura de vértice (en rojo) del cuboctaedro, que se usa para derivar la cara correspondiente (en azul) del rombododecaedro.
La construcción de Dorman Luke procede de la siguiente manera:
Los segmentos de recta EF, FG, GH, HE ya están dibujados, como partes de las rectas tangentes. El polígono EFGH es la cara del poliedro dual que corresponde al vértice original V.
En este ejemplo, el tamaño de la figura de vértice se eligió de modo que su circunferencia se encuentre en la interesfera del cuboctaedro, que también se convierte en la interesfera del dodecaedro rómbico dual. La construcción de Dorman Luke solo se puede usar cuando un poliedro tiene tal interesfera, de modo que la figura de vértice tiene un círculo circunscrito. Por ejemplo, se puede aplicar a los poliedros uniformes.