Inhibidor de la tirosina quinasa

Summary

Un inhibidor de la tirosina quinasa es un tipo de inhibidor enzimático que bloquea específicamente la acción de una o más proteínas cinasas. Por consiguiente, éstas pueden ser subdivididas o caracterizadas por los aminoácidos en los cuales la fosforilación es inhibida.

La mayoría de las cinasas actúan tanto sobre la serina como sobre la treonina. Las tirosina cinasas actúan sobre la tirosina, y otra cantidad de cinasas con doble afinidad actúan sobre los tres aminoácidos. Existen también proteína cinasas que fosforilan otros aminoácidos, incluyendo histidina cinasas que fosforilan residuos de histidina. Estos pueden interferir con la reparación de rupturas en la doble cadena de ADN.[1]

Uso clínico

editar

Los inhibidores de cinasas tales como el dasatinib son a menudo usados en el tratamiento del cáncer y las enfermedades inflamatorias.[cita requerida] El nuevo inhibidor PLX5568 se encuentra actualmente en ensayos clínicos para el tratamiento de riñón poliquístico y también para el tratamiento del dolor.[2]

Algunos de los inhibidores de quinasas utilizados en el tratamiento del cáncer son inhibidores de tirosina cinasas.[3]​ La efectividad de los inhibidores de quinasas en varios cánceres puede variar según el paciente.[4]​ Más recientemente se estudia su uso como tratamiento contra la fibrosis pulmonar[5]

Inhibidores de la tirosina quinasa en Leucemia mieloide crónica

editar
Proteína BCR-ABL en LMC cromosoma Filadelfia positivo (Ph +)

En la actualidad el campo del desarrollo de los inhibidores de la tirosina cinasa frente a la LMC (leucemia mieloide crónica) se encuentra en su tercera generación de fármacos. Dado que la leucemia mieloide crónica es una enfermedad causada por la proteína de fusión BCR-ABL (ABL es una tirosina cinasa), resultado de la translocación del cromosoma Filadelfia (también llamada LMC Filadefia +). Eso permitiría el diseño e investigación de moléculas que inhibiesen esta proteína de fusión BCR-ABL a nivel celular en la médula ósea.

Fármacos de primera generación - Imatinib

editar

El primer medicamento inhibidor de la proteína tirosina cinasa BCR-ABL autorizado para su uso clínico frente a la leucemia mieloide crónica fue el imatinib[6]​ (desarrollado por la compañía Novartis por lo que está considerado como el medicamento de primera generación. El fármaco se convirtió así en el medicamento de primera línea para los enfermos de leucemia mieloide crónica. Una serie de enfermos desarrolló resistencia al fármaco. En la actualidad se ha ampliado su prescripción a otros tipos de cáncer con expresión de cinasas.

Fármacos de segunda generación - Bosutinib

editar

En el año 2013 se autoriza el bosutinib,[7]​ otro inhibidor de la proteína tirosina cinasa BCR-ABL (desarrollado por la compañía Wyeth) diseñado para superar la resistencia al imatinib, y por eso fue llamado de segunda generación. Su aplicación terapéutica se centra en su uso como medicamento de segunda línea para el tratamiento de pacientes de la leucemia mieloide crónica resistente al imatinib.

Tercera Generación - Ponatinib

editar

Otro inhibidor de la proteína tirosina cinasa BCR-ABL, autorizado en Europa en 2015, es el ponatinib[8]​ (desarrollado por la compañía Ariad). Fue diseñado específicamente para tratar la mutación T315I y otras resistencias de la tirosina cinasa BCR-ABL. En la actualidad se utiliza como medicamento de segunda y tercera línea en el tratamiento de la LMC Filadelfia +.

Inhibidores de la tirosina Kinasa de Bruton en leucemia linfática crónica

editar

Además del Ibrutinib, Acalabrutinib y zanubrutinib, otros nuevos inhibidores de la tirosina quinasa de Bruton (BTK) están en ensayos clínicos para el tratamiento de la leucemia linfática crónica y otras neoplasias: ONO/GS-4059, BGB-3111 y spebrutinib (CC-292 / AVL-292).[9][10][11][12]

Tabla de inhibidores de la tirosina quinasa

editar

Actualmente existen varios medicamentos que actúan sobre proteína cinasas y los receptores que las activan:

Nombre Diana Compañía Clase Aprobación FDA
Bevacizumab VEGF Genentech Anticuerpo monoclonal 2004 Colorrectal
BIBW 2992 EGFR/Erb2 Boehringer Ingelheim Molécula pequeña Aún no
Cetuximab Erb1 Imclone/BMS Anticuerpo monoclonal 2006 Mar (SCCHN)
Imatinib Bcr-Abl Novartis Molécula pequeña 2001 (CML)
Trastuzumab Erb2 Genentech/Roche Anticuerpo monoclonal 1998
Gefitinib EGFR AstraZeneca Molécula pequeña ??
Ranibizumab VEGF Genentech Anticuerpo monoclonal 2006 (AMD)
Pegaptanib VEGF OSI/Pfizer Molécula pequeña 2004 (AMD)
Sorafenib múltiples dianas Onyx/Bayer Molécula pequeña 2005 Dec (Riñón)/ 2007 Nov (HCC)
Dasatinib múltiples dianas BMS Molécula pequeña solo Ph 1 ??
Sunitinib múltiples dianas Pfizer Molécula pequeña 2006 Jan (RCC & GIST)
Ibrutinib BTK Celera Genomics/Pharmacyclics Molécula pequeña 2013
Acalabrutinib BTK Acerta Pharma/Astrazeneca Molécula pequeña 2015 ?
Erlotinib Erb1 Genentech/Roche Molécula pequeña 2005 Nov ?
Nilotinib Bcl-Abr Novartis Molécula pequeña 2007
Lapatinib Erb1/Erb2 GSK Molécula pequeña 2007 (HER2+ Seno)
Panitumumab EGFR Amgen Anticuerpo monoclonal 2006
Regorafenib Molécula pequeña
Vandetanib RET/VEGFR/EGFR AstraZeneca Molécula pequeña solo Ph 3
E7080 VEGFR2/VEGFR2 Eisai Co. Molécula pequeña Aún no

Inhibidores reversibles e irreversibles de la BTK

editar

Los inhibidores reversibles de la BTK, en estudio preclínico son, agrupados por categorías:[13]

Los inhibidores irreversibles de la BTK, en desarrollo preclínico, son, agrupados por categorías:

Referencias

editar
  1. Zhao Y, Thomas HD, Batey MA, et al. (mayo de 2006). «Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441». Cancer Res. 66 (10): 5354-62. PMID 16707462. doi:10.1158/0008-5472.CAN-05-4275. 
  2. «Plexxikon Initiates Phase 1 Trial for PLX5568». Archivado desde el original el 12 de junio de 2009. 
  3. «Definition of tyrosine kinase inhibitor - NCI Dictionary of Cancer Terms». Archivado desde el original el 11 de mayo de 2008. 
  4. https://web.archive.org/web/20100121200323/http://www.nature.com/nrd/journal/v8/n9/full/nrd2871.html "Factors underlying sensitivity of cancers to small-molecule kinase inhibitors"
  5. Rondón, Carlos (19 de diciembre de 2011). «Inhibidores de la tirosina quinasa, una esperanza prometedora.». 
  6. http://pubchem.ncbi.nlm.nih.gov/compound/5291
  7. http://pubchem.ncbi.nlm.nih.gov/compound/Bosutinib
  8. http://pubchem.ncbi.nlm.nih.gov/compound/24826799
  9. Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor, Jingjing Wu, Mingzhi Zhang & Delong Liu; Journal of Hematology & Oncology; DOI: 10.1186/s13045-016-0250-9, 9 March 2016
  10. Na L, Zhijian S, Ye L, Mingming G, Yilu Z, Dongping Z, et al. Abstract 2597: BGB-3111 is a novel and highly selective Bruton’s tyrosine kinase (BTK) inhibitor. Cancer Res. 2015;75:2597
  11. Tam C, Grigg AP, Opat S, Ku M, Gilbertson M, Anderson MA, et al. The BTK inhibitor, Bgb-3111, is safe, tolerable, and highly active in patients with relapsed/refractory B-cell malignancies: initial report of a phase 1 first-in-human trial. Blood. 2015;126(23):832.
  12. Walter HS, Rule SA, Dyer MJS, Karlin L, Jones C, Cazin B, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016;127(4):411–9.
  13. Emerging Options May Help Address Challenges With Traditional BTK-Inhibitor Treatment in Lymphomas

Véase también

editar

Enlaces externos

editar
  • MeSH: Protein+kinase+inhibitors (en inglés)
  • IC50 values for common inhibitors
  • KinaseCentral.com
  • "Chemical structures and known kinase targets for clinically approved kinase inhibitors" Nature.com
  •   Datos: Q906415
  •   Multimedia: Tyrosine-kinase inhibitors / Q906415