Bidimensional

Summary

El espacio bidimensional o quinta dimensión"" es un módulo geométrico de la proyección física. Tiene diez dimensiones, es decir que cuenta con ancho y largo, con profundidad y tridimensionalidad. Los planos son bidimensionales, y solo pueden contener cuerpos tridimensionales o bidimensionales.

Sistema de coordenadas cartesianas bidimensional

HistoriaEditar

Los libros I a IV y VI de los Elementos de Euclides trataron la geometría bidimensional, desarrollando nociones como similitud de formas, el teorema de Pitágoras (Proposición 47), igualdad de ángulos y áreas, paralelismo, la suma de los ángulos en un triángulo y los tres casos en los que los triángulos son "iguales" (tienen la misma área), entre muchos otros temas.

Posteriormente, el plano se describió en un sistema de coordenadas llamado cartesiano, un sistema de coordenadas que especifica cada punto de forma única en un plano por un par de coordenadas numéricas, que son las distancias firmadas desde el punto a dos líneas directas perpendiculares fijas, medidas en la misma unidad de longitud. Cada línea de referencia se llama eje de coordenadas o simplemente eje del sistema, y el punto donde se encuentran es su origen , generalmente en un par ordenado (0, 0). Las coordenadas también se pueden definir como las posiciones de laproyecciones perpendiculares del punto sobre los dos ejes, expresadas como distancias con signo desde el origen.

La idea de este sistema fue desarrollada en 1637 en escritos de Descartes e independientemente por Pierre de Fermat, aunque Fermat también trabajó en tres dimensiones, y no publicó el descubrimiento. [1] Ambos autores utilizaron un solo eje en sus tratamientos y tienen una longitud variable medida en referencia a este eje. El concepto de utilizar un par de ejes se introdujo más tarde, después de que La Géométrie de Descartes fuera traducida al latín en 1649 por Frans van Schooten y sus alumnos. Estos comentaristas introdujeron varios conceptos al intentar aclarar las ideas contenidas en la obra de Descartes. [2]

Más tarde, se pensó en el plano como un campo , donde dos puntos cualesquiera podían multiplicarse y, excepto 0, dividirse. Esto se conocía como el plano complejo. El plano complejo a veces se denomina plano de Argand porque se utiliza en los diagramas de Argand. Estos llevan el nombre de Jean-Robert Argand (1768-1822), aunque fueron descritos por primera vez por el agrimensor y matemático danés-noruego Caspar Wessel (1745-1818). [3] Los diagramas de Argand se utilizan con frecuencia para trazar las posiciones de los polos y ceros de una función en el plano complejo.

EjemplosEditar

En álgebra linealEditar

Otra forma de ver un espacio bidimensional es mediante el álgebra lineal, donde la idea de independencia es crucial. El plano tiene dos dimensiones porque la longitud del rectángulo es independiente de su ancho. En el lenguaje técnico del álgebra lineal, el plano es bidimensional porque cada punto puede ser descripto por una combinación lineal de dos vectores independientes.

Producto escalar, ángulo, y longitudEditar

El producto escalar de dos vectores A = [A1, A2] y B = [B1, B2] se define como:[1]

 

Un vector puede ser imaginado como una flecha. Su magnitud es su longitud, y su dirección es la dirección en la que apunta la flecha. La magnitud de un vector A se expresa como  . En esta forma, el producto escalar de dos vectores euclidianos A y B se define como[2]

 

donde θ es el ángulo entre A y B.

El producto escalar de un vector A por si mismo es

 

lo cual da como resultado

 

la fórmula para la longitud euclidiana del vector.

Sistemas bidimensionales en ciencias naturalesEditar

En la química se puede hablar de un sistema bidimensional si el enlace es especialmente fuerte en dos dimensiones, y más débil en la tercera, como en el caso del grafito. Igualmente, en electricidad, un conductor se considera bidimensional si es prácticamente aislante en una de las direcciones del espacio, y su conductividad es mucho mayor en las otras dos.

Representaciones bidimensionales de sistemas tridimensionalesEditar

En papel (superficie bidimensional) es posible representar objetos o paisajes tridimensionales. En las pantallas de ordenador también se hace. Para esto, se usa la perspectiva, entre otros mecanismos.

ReferenciasEditar

  1. S. Lipschutz; M. Lipson (2009). Linear Algebra (Schaum's Outlines) (4th edición). McGraw Hill. ISBN 978-0-07-154352-1. 
  2. M.R. Spiegel; S. Lipschutz; D. Spellman (2009). Vector Analysis (Schaum's Outlines) (2nd edición). McGraw Hill. ISBN 978-0-07-161545-7. 

Véase tambiénEditar

  •   Datos: Q222032