Esta recopilación de ejemplos de extremos de conjunto acotado, como desarrollo del concepto de acotado y ampliando lo presentado en ese artículo, que partiendo de un conjunto en que se ha definido en relación binaria que define una estructura algebraica de orden parcial[1]. en un conjunto ordenado pueden existir elementos notables[2][3][4], se pueden determinar, si existen, los elementos máximos y mínimos del conjunto[5], dada la importancia de este concepto, ampliamos la galería de ejemplos con este anexo.
Partimos del conjunto A:
y la relación binaria representada en cada figura se definen los elementos maximal y minimal y los elemento máximo y mínimo[6][7][8]:
Dado el conjunto A:
y el subconjunto de B de A:
se trata de diferenciar los elementos: mayorantes, supremo y mayor así como los elementos: minorantes, ínfimo y menor[9].