El teorema de Coleman–Mandula (debido a Sidney Coleman y Jeffrey Mandula) es un teorema de imposibilidad en física teórica.[1] Declara que "las simetrías espaciotemporales y las simetrías internas no pueden ser combinadas, salvo de manera trivial" en aquellas teorías de campo que cumplen ciertas suposiciones.[2] En este caso, (que incluye las teorías que podemos considerar realistas), las únicas cantidades conservadas posibles son escalares de Lorentz.
Sea g el álgebra de Lie de simetrías de la matriz de dispersión de una teoría de campo cuántica que satisface las siguientes suposiciones (además de las de la mecánica cuántica relativista, como unitaridad e Invarianza de Lorentz):
Entonces g sólo puede ser la suma directa del álgebra del grupo inhomogeneo de Lorentz y un álgebra de simetrías internas que conmutan con la parte espaciotemporal.[3] La consecuencia más importante de este teorema es que no permite la existencia de simetrías mixtas, que generarían cantidades conservadas que no son escalares, sino otras representaciones del álgebra de Lorentz.[4][5] Es importante notar que las suposiciones del teorema se cumplen en el Modelo Estándar de Partículas.
Si el álgebra de la teoría de campo no contiene al álgebra de Poincaré, sino que está definida para un espaciotiempo con otra simetría, el teorema no es válido.[6] Por otro lado, si ninguna de las partículas de la teoría tiene masa, la simetría del espaciotiempo no es Poincaré, sino el correspondiente grupo de transformaciones conformes; en este caso, es posible tener una combinación no trivial de simetrías internas y espaciotemporales.[3]
Este teorema solamente restringe las simetrías de la matriz de dispersión; no dice nada sobre las simetrías espontáneamente rotas que no aparecen directamente en la matriz de dispersión. De hecho, es fácil de construir simetrías espontáneamente rotas que unifican simetrías espaciales e internas.[7]
El teorema se aplica al álgebras de Lie de simetría, no al grupos de Lie . Por este motivo, no restringe las simetrías discretas o globales.
La Supersimetría provee otra posibilidad para evadir el teorema: es una extensión de la simetría de Lorentz que incluye cargas espinoriales y por lo tanto forma no un álgebra de Lie sino una súper álgebra. El teorema correspondiente para teorías supersimétricas es el teorema de Haag–Łopuszański–Sohnius, que prueba que la superálgebra de Lie más general para una teoría de campo análoga es una suma directa del álgebra de Súper Poincaré y un álgebra de simetría interna.[8] Algo similar ocurre si se admiten deformaciones del álgebra para tener grupos cuánticos.[9]