Se denomina MALDI por sus siglas en inglés Matrix-Assisted Laser Desorption/Ionization (desorción/ionización láser asistida por matriz) y TOF por el detector de iones que se acopla al MALDI y cuyo nombre procede también de sus siglas en inglés Time-Of-Flight.[1][2]
Técnica desarrollada en 1987 por el ingeniero japonés Koichi Tanaka.[3] Consiste en una ionización suave del analito que provoca la vaporización de intactas moléculas termolábiles, no volátiles tales como proteínas y lípidos en un rango de peso molecular entre 2 a 20 kDa, a un relativo bajo costo y resultado inmediato.[4][5]
Muy utilizada para obtener, mediante espectrometría de masas, un espectro propio de un organismo y comparándolo con bases de datos, identificar a nivel de género, especie e incluso cepa aislados bacterianos y fúngicos. También es posible identificar virus.[1][5]
Desde su creación, la espectrometría de masas (MS) fue un método altamente complejo y relegado por varias décadas al análisis de perfiles proteicos en laboratorios de hematología y química. En 1975, Anhalt & Fenselau (Anhalt & Fenselau, 1975) usaron extractos bacterianos de distinto género y especie para obtener espectros de masa únicos y de esta manera identificar por primera vez microorganismos usando MS. Cinco años más tarde se empezaron las técnicas de desorción/ionización que abarcaban la desorción por plasma, desorción por láser y bombardeo atómico rápido que ionizan analitos biomoleculares con lo cual los estudios se dirigieron a obtener perfiles bacterianos aunque el aquel tiempo se limitaba al uso de moléculas de bajo peso molecular.[6][7]
El problema con los espectros obtenidos al aplicar luz láser a las muestras era que el espectro obtenido era de muy baja intensidad; luego se descubrió que cuando el analito era mezclado con una matriz orgánica la luz láser era absorbida más eficientemente y consecuentemente se obtenían espectros de mayor intensidad. Comenzó entonces la época de las técnicas basadas en ionización suave tales como la Desorción/ionización por láser asistida en matriz (MALDI) y Ionización por electrospray (ESI) que permitieron, vía MS, obtener perfiles proteicos en un rango de peso molecular bastante amplio así como de moléculas sin fragmentación.[6]
El analizador que más comúnmente se acopla a la fuente MALDI es el analizador de tiempo de vuelo (TOF) con lo cual nace el nombre de MALDI-TOF.
Holland y colaboradores (1996) mostraron que era posible obtener huellas espectrales MALDI-TOF usando como analitos células bacterianas enteras sin tratamiento previo a la espectrometría de masas. Más tarde se reportaría que es posible obtener perfiles proteicos usando MALDI-TOF a partir de una purificación posterior a una extracción celular.[8][9][10]
Desde la última década del siglo XX se ha incrementado notablemente el número de publicaciones que emplean MALDI-TOF como herramienta de identificación fúngica, vírica y bacteriana donde se ha llegado incluso a nivel de cepa, porque relativamente no es costosa y bastante rápida.
De manera general, el método de ionización a ser utilizado depende de la naturaleza de la muestra (mezclas simples/complejas, proteínas, lípidos, polisacáridos, entre otros) y del objetivo que busque el estudio (identificación de microorganismos, identificación de proteínas, cuantificación y biotyping o biotipaje), MALDI-TOF junto con ESI ofrecen una ionización suave que mantiene intacto el analito desde la ionización hasta su conversión a fase gaseosa.[11]
Para llevar a cabo el análisis, sobre una placa metálica conductora se mezcla la muestra con una matriz orgánica para lograr una cocristalización muestra-matriz. En alto vacío, es tratada con pulsos de luz láser provocando que la matriz absorba esta energía y la convierta en energía de excitación y transferencia de iones al analito. El área tratada se calienta y se provoca la desorción de iones de fase sólida a gaseosa.[12] Según Croxatto, Prod’hom & Greub (2012) un espectrómetro de masas se divide en tres unidades funcionales.[1] (Figura 2):
Históricamente la confirmación de la identificación de microorganismos ha seguido fundamentada en ensayos jerárquicamente dependientes: (1) aislamiento, pruebas basadas en tinciones y morfología microscópica, (2) cultivos en medio sólido o líquido para propagar el organismo de interés, (3) pruebas bioquímicas y antigénicas dirigidas al fenotipo y metabolismo microbiano y con el apoyo de manuales bacteriológicos, llegar a la identificación, y (4) principalmente cuando la identificación tiene una aplicación clínica se prueba susceptibilidad a antibióticos para optar por el mejor tratamiento. Lamentablemente, los resultados dependen de la tasa de crecimiento del microorganismo por lo que pueden llegar a tardar semanas.[1]
Años después se establecieron técnicas moleculares basadas en la secuenciación de barcodes, 16S para bacterias y 18S para hongos; no obstante, es bien conocido que en este tipo de técnicas es necesaria instrumentación especializada y una zona del laboratorio específica. Para la mayoría de laboratorios no es rentable tener una zona dedicada a la secuenciación; por tanto, la identificación basada en análisis fenótipico de los microorganismos, e.g. MALDI-TOF, se perfila como la preferida a la hora de identificación rutinaria.[1][13]
La identificación bacteriana usando MALDI-TOF no ha presentado mayor inconveniente, salvo algunas especies. Los dermatofitos son hongos que crecen en superficies queratinizadas como en el cabello, piel y uñas. Debido a su compleja estructura filamentosa no ha sido sencilla su identificación por MALDI-TOF. De entre diez estudios focalizados a la identificación de dermatofitos usando MALDI-TOF, Karabicak et al. (2015) reportaron el resultado más bajo (13.5 %), mientras que Erhard et al. (2008) obtuvieron un 99,9 %.[14][15] Luego de analizar minuciosamente estos resultados L’Ollivier & Ranque (2016) concluyeron que los pasos críticos son: (i) la extracción de proteínas, para la cual es necesario hacerlo por el método del ácido fórmico/acetonitrilo y (ii) una base de datos confiable.[5]
Las herramientas de diagnóstico de diabetes mellitus tipo 2 incluyen la prueba de tolerancia a glucosa (OGTT), glucosa en sangre (FBG) y hemoglobina glicosilada (HbA1c). Meng et al. (2016) tomaron en cuenta que estas pruebas proveen marcadores “retrospectivos” y por tanto no podían ser aplicados como predictivos y reportaron la caracterización, usando MALDI-TOF, de 6 péptidos (peaks m/z 1452.9, 1692.8, 1946.0, 2115.1, 2211.0 y 4053.6) como potenciales biomarcadores para el diagnóstico de la diabetes mellitus tipo 2. Posteriormente, realizaron un modelo diagnóstico basado en análisis de regresión logística y curva ROC, obteniendo una precisión de 82.2 %, sensibilidad de 82.5 %, y especificidad de 77.8 %.[16]
Los laboratorios de investigación optan muy preferentemente por la secuenciación de barcodes como herramienta para la identificación microbiana; sin embargo la implementación de la espectrometría de masas MALDI-TOF y el crecimiento exponencial de las bases de datos permitirán a los laboratorios clínicos una identificación microbiana muy rápida y a bajo costo. Tomando en cuenta la crisis que se avecina por el abuso de antibióticos, estas ventajas son aspectos claves para un pronto tratamiento a los pacientes.
En el futuro los espectrómetros de masa estarán automatizados para llevar a cabo un test antibiótico y por lo tanto una parcial o completa caracterización microbiana que en la actualidad podría tomar varios días como se mencionó anteriormente. A mediano plazo podría no ser necesario el cultivo de los microorganismos en medio para algunos casos.[2]