Homeomorfismo de grafos

Summary

En Teoría de grafos, se dice que dos grafos y son homeomorfos si ambos pueden obtenerse a partir de un mismo grafo por una sucesión de subdivisiones elementales de aristas. Suele notarse por .

Este concepto, de naturaleza combinatoria, está relacionado con el concepto topológico de homeomorfismo: cualquier grafo puede representarse como un espacio topológico en que cada vértice queda representado por un punto distinto y cada arista por un arco homeomorfo con el intervalo [0,1]. Dos grafos son homeomorfos en el sentido de la teoría de grafos si y solo si lo son como espacios topológicos.

Ejemplo

editar

Todos los grafos ciclo de n vértices son homeomorfos entre sí. Por ejemplo, si se hace una subdivisión elemental de algún vértice de   se obtiene un  . Finalmente, si al   se le aplica nuevamente una subdivisión elemental se logra el  . Como tanto   y   se obtuvieron de   se dice que   es homeomorfo a   y se nota  


  •   Datos: Q584521