Un grupoide de Lie es un grupoide donde ambos, el grupoide y el espacio base son variedades y las funciones origen y final son funciones diferenciables cuya diferencial es suryectiva, es decir son sumersiones suryectivas. Esta definición generaliza la de grupo de Lie: los grupos de Lie son los grupoides de Lie donde el espacio base es trivial.
Observar que si denotamos la diagonal de , entonces . Como es una sumersión suryectiva, por el teorema de la función inversa obtenemos que es una subvariedad incrustada y cerrada de y hereda su estructura diferenciable. Esto nos dice que tiene sentido hablar de que el producto o multiplicación es diferenciable.