En matemáticas el grupo espinorial Spin(n) es un doble cubrimiento particular del grupo ortogonal especial SO(n, R). Es decir, existe una secuencia exacta corta de grupos de Lie:
Para n > 2, Spin(n) es conexo así que coincide simplemente con el cubrimiento universal de SO(n, R). Como grupo de Lie Spin(n) por lo tanto comparte su dimensión n (n - 1)/2 y su álgebra de Lie con el grupo ortogonal especial.
Spin(n) se puede construir como el subgrupo de los elementos inversibles en el álgebra de Clifford C(n).