En matemáticas, un grupo de Tarski (en notación inglesa Tarski monster group), es un grupo infinito G tal que para todo subgrupo propio H, i.e., , con excepción del subgrupo identidad, es un grupo cíclico de orden igual a un primo p. Un grupo de Tarski es necesariamente grupo simple. En 1979, A. Yu. Olshanskii demostró que el grupo de Tarskii existe y que existe un p-grupo de Tarskii para todo primo p > 1075. Son una fuente muy importante de contraejemplos para las conjeturas en teoría de grupos, y de forma más importante para el problema de Burnside y la conjetura de von Neumann.
Sea un número primo. Un grupo infinito se dice que es un grupo de Tarskii para si todo subgrupo no trivial de G (i.e., todo subgrupo distinto de 1 y G) tiene elementos.