En geometría, un grupo de Lie complejo es una variedad analítica compleja que también es un grupo de tal manera que es holomorfo. Ejemplos básicos son , los grupos lineales generales sobre los números complejos. Un grupo de Lie complejo compacto conexo es precisamente un toro complejo (no debe confundirse con el grupo de Lie complejo ). A cualquier grupo finito se le puede dar la estructura de un grupo de Lie complejo. Un grupo de Lie semisimple complejo es un grupo algebraico.
El álgebra de Lie de un grupo de Lie complejo es un álgebra de Lie compleja.