Dicho límite puede converger a cualquier valor, puede converger a infinito o puede no existir, dependiendo de las funciones f y g.
Cociente indeterminado
editar
La forma 0/0
editar
Un ejemplo muy frecuente es la forma indeterminada del tipo 0/0. Cuando x se acerca a 0, las razones x/x3, x/x, y x2/x se van a , 1, y 0 respectivamente. En cada caso, sin embargo, si los límites del numerador y del denominador se evalúan en la operación de división, el resultado es 0/0. De manera que, informalmente, 0/0 puede ser 0, o incluso 1 y, de hecho, es posible construir otros ejemplos similares que converjan a cualquier valor particular. Por ello es que la expresión 0/0 se dice que es indeterminada.
Ejemplos:
La forma /
editar
Esta forma indeterminada se da en cocientes en los cuales, tanto el numerador como el denominador, tienen por límite . En estos casos, no se puede aplicar ninguna regla operatoria, por lo que se dice que se está frente a una forma indeterminada del tipo /. Para resolver esta indeterminación pueden aplicarse métodos tales como factorización, derivación, el teorema del emparedado, entre otros.
Ejemplos:
Producto indeterminado
editar
La forma indeterminada 0 •
Diferencia indeterminada
editar
En los casos en que el límite de una diferencia es , no se puede aplicar ninguna regla operatoria para límites, por lo que se dice que se está frente a una forma indeterminada del tipo –. Para resolver esta indeterminación pueden aplicarse métodos como la multiplicación por los polinomios conjugados.