La curtosis de una variable estadística/aleatoria es una característica de forma de su distribución de frecuencias/probabilidad.
Una curtosis grande implica un mayor número de valores de la variable muy dispersos y muy lejos del centro de la misma (es decir, en las colas). Esto explica una forma de la distribución de frecuencias/probabilidad con colas más largas (aunque no necesariamente más gruesas[1]).
Sin embargo, una mayor curtosis no implica necesariamente una mayor varianza, ni viceversa.
Un coeficiente de curtosis es el cuarto momento con respecto a la media estandarizado que se define como:
donde es el 4.º momento centrado o con respecto a la media y es la desviación estándar.
En la distribución normal se verifica que , donde es el momento de orden 4 respecto a la media y la desviación típica. Por eso, está más extendida la siguiente definición del coeficiente de curtosis, también denominada exceso de curtosis:
donde se ha sustraído 3 (que es el valor de para la curtosis de la distribución normal o gaussiana) con objeto de generar un coeficiente que valga 0 para la Normal y tome a ésta como referencia de curtosis.
Tomando, pues, la distribución normal como referencia, una distribución puede ser:
El coeficiente de curtosis puede usarse como un indicador, en combinación de otros, de la posible existencia de observaciones anómalas, de no normalidad (ver, p.ej., el Test de Jarque-Bera) o de bimodalidad.[2]
La evidencia más reciente,[3] muestra que la curtosis poco tiene que ver con la antigua concepción del coeficiente de curtosis como un coeficiente de apuntamiento y, en cambio, mucho con las colas y la posible existencia de valores atípicos. Esta interpretación es la que prevalece a día de hoy.
Otra forma de medir la curtosis se obtiene examinando la fórmula de la curtosis de la suma de variables aleatorias. Si Y es la suma de n variables aleatorias estadísticamente independientes, todas con igual distribución X, entonces , complicándose la fórmula si la curtosis se hubiese definido como .