Apache Hive

Summary

Apache Hive es una infraestructura de almacenamiento de datos construida sobre Hadoop para proporcionar agrupación, consulta, y análisis de datos.[1]​ Inicialmente desarrollado por Facebook, Apache Hive es ahora utilizada y desarrollado por otras empresas como Netflix y la Financial Industry Regulatory Authority (FINRA).[2][3]​ Amazon mantiene una derivación de software de Apache Hive incluida en Amazon Elastic MapReduce en sus servicios Amazon Web Services.[4]

Apache Hive
Información general
Tipo de programa gestión de datos
Desarrollador Apache Software Foundation
Lanzamiento inicial 9 de noviembre de 2011
Licencia Apache License 2.0
Estado actual Activo
Información técnica
Programado en Java
Plataformas admitidas máquina virtual Java
Versiones
Última versión estable 2.0.1 (25 de mayo de 2016 (8 años, 10 meses y 23 días))
Enlaces
Sitio web oficial
Seguimiento de errores

Características

editar

Apache Hive soporta el análisis de grandes conjuntos de datos almacenados bajo HDFS de Hadoop y en sistemas compatibles como el sistema de archivos Amazon S3. Ofrece un lenguaje de consultas basado en SQL llamado HiveQL[5]​ con esquemas para leer y convertir consultas de forma transparente en MapReduce, Apache Tez[6]​ y tareas Spark. Los tres motores de ejecución pueden correr bajo YARN. Para acelerar las consultas, Hive provee índices, que incluyen índices de bitmaps.[7]​ Otras características de Hive incluyen:

  • Indexación para proporcionar aceleración, tipo de índice que incluye compactación e índices de bitmaps. Otros tipos de índices serán incluidos en futuras versiones.
  • Diferentes tipos de almacenamiento como texto, RCFile, HBase, ORC, y otros.
  • Almacenamiento de metadatos en bases de datos relacionales, lo que permite reducir el tiempo para realizar verificaciones semánticas durante la ejecución de consultas.
  • Operaciones sobre datos comprimidos almacenados en el ecosistema Hadoop usando algoritmos que incluyen DEFLATE, BWT, snappy, etc.
  • Funciones definidas por el usuario (en inglés, user-defined function, UDF) para manipular fechas, textos, y otras herramientas de minería de datos. Hive soporta la extensión de las funciones definidas por el usuario de manera de tratar casos no contemplados.
  • Consultas estilo SQL (HiveQL), las cuales son convertidas automáticamente a MapReduce o Tez, o tareas Spark.

Por defecto, Hive almacena sus metadatos en una base de datos apache Derby, pero puede ser configurado para usar MySQL.[8]

Véase también

editar

Referencias

editar
  1. Venner, Jason (2009). Pro Hadoop. Apress. ISBN 978-1-4302-1942-2. 
  2. «Use Case Study of Hive/Hadoop». Consultado el 8 de junio de 2016. 
  3. «OSCON Data 2011, Adrian Cockcroft, "Data Flow at Netflix"». YouTube. Consultado el 8 de junio de 2016. 
  4. Amazon Elastic MapReduce Developer Guide
  5. «HiveQL Language Manual». 
  6. «Apache Tez». Consultado el 8 de junio de 2016. 
  7. «Working with Students to Improve Indexing in Apache Hive». Consultado el 8 de junio de 2016. 
  8. Lam, Chuck (2010). Hadoop in Action. Manning Publications. ISBN 1-935182-19-6. 
  •   Datos: Q4778914
  •   Multimedia: Apache Hive / Q4778914