Algoritmo de Ford-Fulkerson

Summary

El algoritmo de Ford-Fulkerson propone buscar caminos en los que se pueda aumentar el flujo, hasta que se alcance el flujo máximo. Es aplicable a los Flujos maximales. La idea es encontrar una ruta de penetración con un flujo positivo neto que una los nodos origen y destino. Su nombre viene dado por sus creadores, L. R. Ford, Jr. y D. R. Fulkerson.

Introducción

editar

Sea   un grafo, con   vértices,   aristas y donde por cada arista  , tenemos una capacidad   y un flujo  . Se busca maximizar el valor del flujo desde una fuente   hasta un sumidero  .

El método inicia con   para toda   en  . En cada iteración, se incrementa el flujo en   mediante el resultado de una búsqueda de un «camino de aumento» en una «red residual»  . Aunque cada iteración del método Ford-Fulkerson aumenta el valor del flujo, el flujo por arista de   puede aumentar o disminuir. En cada iteración el flujo se aumentara hasta que la red   no tenga más caminos de aumento.[1]

El flujo a aumentar se debe considerar legal, para esto debe seguir que.

  • El flujo de para toda arista   no debe ser mayor que la capacidad de dicha arista.
  • El flujo que sale de la fuente   debe ser igual al que llega al sumidero  .
En una red con fuente s y sumidero t único el valor máximo que puede tomar un flujo variable es igual a la capacidad mínima que puede tomar un corte.

Red Residual  

editar

Definimos una red residual   como la red donde la capacidad de cada una de las aristas se define como  , donde   es la capacidad de la arista y el flujo   es el flujo de la arista   en el camino de aumento seleccionado.

Intuitivamente, dado el grafo   y un camino de aumento  , la red residual   consiste en el grafo que representa el como cambia la capacidad de cada una de las aristas con respecto al flujo del camino de aumento   en el grafo  .

Caminos de Aumento

editar

Un camino de aumento es un camino dirigido de la fuente   al sumidero   en  , donde la capacidad del camino de aumento es el mínimo de las capacidades de sus aristas. Para la elección de un camino de aumento se pueden usar algoritmos ya conocidos, algunos de las más famosos son DFS, BFS, A* o IDA* (Algoritmos de Búsqueda).

Pseudocódigo

editar
 Ford-Fulkerson(G,s,t) { 
    Gf = Crear_grafo_residual(G);
    for (cada arista (u,v) de E) { 
        f[u,v]= 0;
    } 
    while (exista un camino p desde s a t en la red residual Gf) { 
        cf(p) = min{cf(u,v): (u,v) está sobre p};
        for (cada arista (u,v) en p) { 
            f[u,v]= f[u,v] + cf(p); 
            f[v,u]= f[v,u] - cf(p); 
        }
        Actualizar_grafo_residual(Gf);
    } 
 }

Referencias

editar
  1. Cormen, Thomas H. (30 de septiembre de 2009). Introduction to Algorithms. MIT press. 

Enlaces externos

editar
  • Animación del algoritmo de Ford-Fulkerson.
  •   Wikimedia Commons alberga una categoría multimedia sobre Algoritmo de Ford-Fulkerson.
  •   Datos: Q284695
  •   Multimedia: Ford-Fulkerson's algorithm / Q284695